Neutrino Factory Studies

m R~B~Palmer m LBNL~~3/15/03

Some of Andy's Roles

- Being Old but I am gaining on him
- Being right or at least agreeing with me
- Being anti-windsurfing I will come to this
- Saving the Collaboration from war Muon (Neutrino Factory) Collaboration Spokesperson 99-02
- Being wrong, I hope
 "you can't half the cost" (NUFAC02, London)
- Working to prove himself so FFAG's to the rescue

Muon Ring Neutrino Factory

$$L = 2800 \text{ km}, \sin^2 2\theta_{13} = 0.04$$

- Study 1 Performance too low
- Study 2 with 2 MW OK

- muon decays in straight section / 1 10⁷ sec
- For Detector mass 50 kT
- Best distance: 2000 3000 km

Study 2 Neutrino Factory

*** 78 % of cost will discuss these

1) PHASE ROTATION

(Used to reduce dp/p prior to Cooling)

Study 2 with Induction Linacs

dE

Bunched Beam Rotation with 200 MHz RF (Neuffer)

- 200 MHz RF is cheaper than Induction Linacs
- But RF frequency must vary along bunching channel (high mom. bunches move faster than low)

Simulation (Several Programs, Inc. ICOOL)

- About as efficient as Study 2
- But captures both charges

Compare with Study 2

• Study 2

• e.g. Bunch Beam Rotation

	Study 2	Now	Factor
Tot Length (m)	328^{1}	166	51~%
Acc Length (m)	269^{2}	35	13~%
Acc Type	Induction ³	Warm RF	

- Approx 2 times performance
- Expect Substantial Savings
- Neuffer claims approx 1/4

BUT

• Not yet matched into cooling ***

2) COOLING

Cooling Concepts

• TRANSVERSE

• LONGITUDINAL EMIT EXCH

- Needs Low density Material to reduce scattering Liquid Hydrogen
- Strong Focusing Solenoids
- Dispersion e.g. In a Ring

"RFOFO" Cooling Ring

V. Balbekov, J.S. Berg, R. Fernow, J. Gallardo, W. Lau, R.B. Palmer, L. Reginato, D. Summers Y. Zhao

"RFOFO" (The St Croix Windsurfing Story)

Alternating Solenoid Focus

- Greater aperture and stonger focus than Quads
- Average Bs=0 (needed for angular momentum)
- But Momentum Dependence of Beta

- Andy Suggests Breaking the symmetry
- I give up my windsurfing and try it

Andy's Super FOFO

Performance

- ICOOL Simulation
- No Windows
- No Injection/Extraction Gap

- Very Good cooling (Merit up to 160) (without windows or injection/extraction)
- Real fields from real coils (Balbekov)
- Injection/Extraction seems OK

Compare with Study 2

• Study 2 Cooling

• e.g. RFOFO Cooling Ring

	Study 2	Now	Factor
Tot Length (m)	108	33	30~%
Acc Length (m)	54	16	30 %
Acc Grad	$16 \mathrm{\ MV/m}$	$12 \mathrm{\ MV/m}$	66 ~%

- 1. Without windows or injection/extraction
 - Expect Substantial Savings
 - Unofficially: Approx 1/3

BUT

- Absorber heating needs study
- Very thin windows required
- Phase Rotation needs modification ***
- Super-kicker needs development ***
 1000 times pbar kickers

3) ACCELERATION

1. Recirculating Linear Accelerator as in Study 2

- only 4 turns: much SC Acceleration needed
- Many arcs: 4 km of beam-line

FFAGs: "Fixed Field Alternating Gradient" Acceleration:

More turns Less RF

- 2. Scaling FFAG (Japanese Effort)
 Non-Isochronous: Requires Frequency Modulation or Very
 Low Frequency
- 3. Non-Scaling FFAG (Carol Johnstone et al)
 Isochronous and More compact than Scaling

Scaling FFAG (proposed by Japan)

bend outward

bend inward

- Invented at MURA in 60's
- eg spiral Ridge Cyclotron

POP FFAG at KEK

Figure C.2: Top-view of the POP FFAG

- Δp limited only by aperture but only 1:2 for Japan 20 GeV
- Non-isochronous Low Frequency RF (25 MHz)
- Short gaps Non-superconducting RF
- Large magnet apertures Expensive

Non-scaling FODO FFAG (Proposed by Carol Johnstone)

Combined function strongly focusing FODO (without sextupoles)

Path length vs momentum:

- Less path length difference for same energy range
- Non-monotonic
- Allows 200 MHz (vs. 25 MHz for scaling)
- but gaps still short:
- non-superconducting RF

New Idea from LBNL Workshop:

(Berg, Johnstone, Keil, Palmer, Sessler)

- Using Carol's lattice
- Put RF in straight sections
- Make tight arc
- Adiabatically match between them
- Large acceptance
- 3 m gaps OK for SC RF
- Smaller circumference
- Smaller aperture magnets

Compare with Study 2

• Study 2 RLA

• e.g. Racetrack FFAG

• Acceptance 2 times Study-2

	Study 2	Now	Factor
Acceleration	2.5 - 20	6-20	80~%
$\mathbf{Vac}\ \mathbf{Length}^1$	3261	730	22 %
Tun Length 2	1494	730	49~%
Acc Length ³	288	102	35~%
Acc Grad.	16	8	50~%

• Substantial Savings
Unofficially: Approx 1/2

BUT

- Match not yet Designed
- More Pre-acceleration required
- Inject/extract not designed
- Other Options

Performance vs Acceptance and Cooling

- Performance at 30 pi mm without cooling approx equal to Performance at 15 pi mm with cooling
- Not a new idea: Mori at KEK has proposed no cooling for a long time
- Note: We still need (approx 3) cooling rings for a Muon Collider
- If both signs, Performance approx equal to 2 times

Cost Reduced Neutrino Factory

Warning: The following is not official
Mike Zisman should not be listening this is for Andy

	-	% of 1.8 m\$ Cost (no EDIA etc) without driver or target		
	p Driver			
	Hg Target	Study-2	New	No cooling
ğ	Phase Rotation	(29 %)	(8 %)	(8 %)
H H	Cooling	(23~%)	(8 %)	(0 %)
	Pre-Acceleration	n (14 %)	(14~%)	(14~%)
	RLA Acceleration	on (26 %)	(13%)	(13%)
	Storage Ring Neutrino Beam	(8 %)	(8 %)	(8 %)
		$\boldsymbol{100\%}$	51%	43%

Conclusions

- If 30 pi mm acceptance and both signs:
- Above Study-2 Performance without cooling, at below 1/2 cost
- If no cooling: little R&D Needed
 - Phase rotation as now designed
 - No Hydrogen Absorbers etc
 - No Super Kicker required
- Cooling can be Phase 2
- Andy may be wrong
- Thanks to Andy

BUT

- Much more work needed
- But it is fun
- You see why Andy works on this though nobody pays him